Муниципальное бюджетное общеобразовательное учреждение

«Агинская средняя общеобразовательная школа № 2»

Приложение к основной общеобразовательной программе основного общего образования МБОУ «Агинская СОШ № 2», утвержденной приказом № 71Д от 31.08.2020 г. (с изменениями, приказ № 49-Д от 30.06.2021 г.)

РАБОЧАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ХИМИЯ 8-9 КЛАСС

Пояснительная записка

Рабочая программа составлена на основе Федерального компонента образовательного стандарта основного общего образования по химии; Примерной программы основного общего образования по химии, Программы "Курс химии для 7-9 классов общеобразовательных учреждений" (авт. О. С. Габриелян), и рассчитана на 138 учебных часов.

Рабочая программа ориентирована на использование учебников: Кузнецова, Н.Е. химия: 8 класс: учебник / Н.Е. Кузнецова, И.М. Титова, Н.Н. Гара. — 7-е изд., стереотип. — М.: Вентана-Граф, 2020. Кузнецова, Н.Е. химия: 9 класс: учебник / Н.Е. Кузнецова, И.М. Титова, Н.Н. Гара. — 9-е изд., стереотип. — М.: Вентана-Граф, 2020.

Соотнесение количества часов в примерной образовательной программе по предмету, авторской программе с количеством часов в учебном плане школы:

класс	авторская программа	учебный план ОУ
8	68/2	68/2
9	68/2	68/2

Весь теоретический материал курса химии для основной школы рассматривается на первом году обучения, что позволяет учащимся более осознанно и глубоко изучить фактический материал — химию элементов и их соединений. Наряду с этим такое построение программы дает возможность развивать полученные первоначально теоретические сведения на богатом фактическом материале химии элементов. В результате выигрывают обе составляющие курса: и теория, и факты.

Программа построена с учетом реализации межпредметных связей с курсом физики 7 класса, где изучаются основные сведения о строении молекул и атомов, и биологии 6—9 классов, где дается знакомство с химической организацией клетки и процессами обмена веществ.

Пель обучения химии:

- освоение важнейших знаний об основных понятиях и законах химии, химической символике;
- овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчёты на основе химических формул веществ и уравнений химических реакций;
- развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии с возникающими жизненными потребностями;
- воспитание отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Задачи обучения химии:

- знать основы науки важнейшие факты, понятия, законы и теории;
- уметь наблюдать и объяснять химические явления, соблюдать правила техники безопасности при работе с веществами в химической лаборатории и в повседневной жизни;
- развивать интерес к химии как возможной области будущей практической деятельности;
- развивать интеллектуальные способности и гуманистические качества личности;
- сформировать экологическое мышление, убежденность в необходимости охраны окружающей среды.

В соответствии с целевыми приоритетами, содержащимися в Рабочей программе воспитания МБОУ «Агинская СОШ № 2» на уровне основного общего образования, воспитательный ресурс учебного предмета направлен на решение воспитательных задач:

Целевой приоритет воспитания на уровне ООО

<u>Создание благоприятных условий для развития социально значимых отношений</u> школьников и, прежде всего, ценностных отношений:

- к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне
- к своему Отечеству, своей малой и большой Родине как месту, в котором человек вырос и познал первые радости и неудачи, которая завещана ему предками и которую нужно оберегать
- к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека
- к миру как главному принципу человеческого общежития, условию крепкой дружбы,
 налаживания отношений с коллегами по работе в будущем и создания благоприятного
 микроклимата в своей собственной семье
- к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда
- к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение
- к здоровью как залогу долгой и активной жизни человека, его хорошего настроения и оптимистичного взгляда на мир
- к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимоподдерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества
- к самим себе как хозяевам своей судьбы, самоопределяющимся и самореализующимся личностям, отвечающим за свое собственное будущее

Содержание курса. 8 класс.

Введение (3ч). Химия и научно-технический прогресс. Исторические этапы возникновения и развития химии. Основные понятия и теории химии. Лабораторное оборудование и приёмы работы с ним. Правила техники безопасности при работе в кабинете химии.

<u>Демонстрации</u>. Таблицы, слайды, показывающие исторический путь развития, достижения химии и их значение; лабораторное оборудование.

Практическая работа №1. Лабораторное оборудование и приемы работы с ним.

Раздел 1. Вещество и химические явления с позиций атомно-молекулярного учения. Химические элементы и вещества в свете атомно-молекулярного учения (9ч.).

Понятие «вещество» в физике и химии. Физические и химические явления. Изменяющееся вещество как предмет изучения химии. Фазовые переходы. Описание веществ. Химические элементы: их знаки и сведения из истории открытия. Состав веществ. Закон постоянства состава, химические формулы. Формы существования химических элементов. Вещества простые и сложные. Простые вещества: металлы и неметаллы. Общая характеристика металлов и неметаллов. Некоторые сведения о металлах и неметаллах, обусловливающих загрязнённость окружающей среды. Описание некоторых наиболее распространённых простых веществ. Атомномолекулярное учение в химии. Относительные атомные и молекулярные массы. Система химических элементов Д.И.Менделеева. Определение периода и группы. Характеристика положения химических элементов в периодической системе. Валентность. Количество вещества. Определение валентности по положению элемента в периодической системе. Моль — единица количества вещества. Молярная масса.

Демонстрации. 1. Физические и химические явления. 2. Измерение плотности жидкости ареометром. 3. Плавление серы. 4. Определение теплопроводности и электропроводности веществ. 5. Опыты с коллекцией «Шкала твёрдости». 6. Модели атомов и молекул. 7. Коллекция металлов и неметаллов. 8. Получение углекислого газа разными способами. 9. Электролиз воды. 10. Возгонка йода. Кипячение воды. Накаливание кварца. Нагревание нафталина. 11. Опыты по диффузии. 12. Коллекция простых веществ, образованных элементами I — III периодов. 13. Набор кодограмм: «Образцы решения расчётных задач». 14. Коллекция веществ количеством 1 моль. 15. Динамическое пособие: «Количественные отношения в химии».

Лабораторные опыты. 1. Рассмотрение веществ с различными физическими свойствами (медь, железо, цинк, сера, вода, хлорид натрия и др.). 2. Испытание твёрдости веществ с помощью образцов коллекции «Шкала твёрдости». 3. Примеры физических явлений: сгибание стеклянной трубки, кипячение воды, плавление парафина. 4. Примеры химических явлений: горение древесины, взаимодействие мрамора с соляной кислотой. 5. Изучение образцов металлов и неметаллов (серы, железа, алюминия, графита, меди и др.). 6. Изучение свойств веществ: нагревание воды, нагревание оксида кремния (IV).

Расчётные задачи. 1. Вычисление относительной молекулярной массы веществ, массовой доли элементов по химическим формулам. Вычисление молярной массы вещества. 2. Определение массы вещества по известному его количеству и наоборот.

Тема творческой работы. Иллюстрирование положений атомно-молекулярного учения.

Химические реакции. Законы сохранения массы и энергии (6ч.).

Сущность химических явлений в свете атомно-молекулярного учения. Признаки протекания химических реакций. Понятие об энтропии и внутренней энергии вещества. Обратимость химических реакций. Превращение энергии при химических реакциях, условия протекания химических реакций, экзо- и эндотермические реакции. Законы сохранения массы и энергии, их взаимосвязь в законе сохранения материи. Составление уравнений химических реакций. Расчёты по уравнениям химических реакций. Типы химических реакций: разложения, соединения, замещения, обмена. Обобщение знаний о химических реакциях.

Демонстрации. 1. Примеры химических реакций разных видов: разложение малахита, бихромата аммония, взаимодействие соляной кислоты с карбонатом натрия и др. 2. Опыты, иллюстрирующие закон сохранения массы вещества: горение свечи на весах с поглощением продуктов горения, окисление металлов в закрытых сосудах со взвешиванием, обменные реакции в приборах для

иллюстрации закона. 3. Опыты, иллюстрирующие превращения различных видов энергии друг в друга. Набор моделей атомов.

Лабораторные опыты. 1. Признаки протекания химических реакций: нагревание медной проволоки; взаимодействие растворов едкого натра и хлорида меди; взаимодействие растворов уксусной кислоты и гидрокарбоната натрия; взаимодействие растворов хлорного железа и красной кровяной соли; растирание в ступке порошков хлорида аммония и гашёной извести. 2. Типы химических реакций: разложение малахита; взаимодействие железа с раствором хлорида меди (II), взаимодействие растворов едкого натра и хлорного железа.

Расчётные задачи. Вычисление по химическим уравнениям масс, количеств веществ: a) вступивших в реакцию; б) образовавшихся в результате реакции.

Методы химии (2ч). Понятие о методе как средстве научного познания действительности. Методы, связанные с непосредственным изучением веществ: наблюдение, описание, сравнение, химический эксперимент. Понятие об индикаторах. Химический язык, его важнейшие функции в химической науке.

Лабораторные опыт. Изменение окраски индикаторов в различных средах.

Вещества в окружающей нас природе и технике (6ч.).

Вещества в природе: основные сведения о вещественном составе геосфер и космоса. Понятие о техносфере. Чистые вещества и смеси. Степень чистоты и виды загрязнения веществ. Понятие о гомогенных и гетерогенных смесях. Разделение смесей. Очистка веществ: фильтрование, дистилляция, кристаллизация, экстрагирование, хроматография, возгонка. Идентификация веществ с помощью определения температур плавления и кипения. Вещества в технике. Получение веществ с заданными свойствами — основная проблема химии. Понятие о веществах как о сырье, материалах и продукции. Вещества органические и неорганические. Первоначальные сведения о химической технологии. Планетарный характер влияния техники на окружающую среду. Природоохранительное значение очистных сооружений и экологически чистых технологий. Понятие о растворах как гомогенных физико-химических системах. Значение растворов для жизни человека, сельскохозяйственного и промышленного производства. Растворимость веществ. Влияние техносферы на природные пресные и морские воды. Факторы, влияющие на растворимость твёрдых веществ и газов. Изменение растворимости кислорода в связи с загрязнением вод. Коэффициент растворимости. Способы выражения концентрации растворов: массовая доля, молярная концентрация.

Демонстрации. 1. Разделение смесей различными методами: методом отстаивания; с помощью делительной воронки; методом колоночной хроматографии. 2. Коллекция различных сортов нефти, каменного угля. 3. Коллекция природных и синтетических органических веществ. 4. Растворение веществ с различным коэффициентом растворимости. 5. Условия изменения растворимости твёрдых и газообразных веществ. 6. Тепловые эффекты при растворении: растворение серной кислоты, нитрата аммония.

Лабораторные опыты. 1. Ознакомление с образцами простых и сложных веществ, минералов и горных пород. 2. Разделение смеси серы и железа, разделение смеси нефти и воды. 3. Исследование физических и химических свойств природных веществ (известняков). 4. Изучение влияния примесей в веществе на его физические и химические свойства (взаимодействие лабораторного и технического карбоната кальция с соляной кислотой). 5. Обугливание органических веществ. 6. Сравнение проб воды: водопроводной, из городского открытого водоёма. Знакомство с образцами продукции химических и смежных с ним производств.

Практические работы. 2. Очистка веществ методами фильтрования, кристаллизации, перегонки, возгонки, хроматографии, экстрагирования. 3. Растворимость веществ

4. Приготовление растворов заданной концентрации.

Расчётные задачи. 1. Построение графиков растворимости веществ при различной температуре.

- 2. Использование графиков растворимости для расчётов коэффициентов растворимости веществ.
- 3. Вычисление концентрации растворов (массовой доли, молярной концентрации) по массе растворённого вещества и объёму или массе растворителя. 4. Вычисление массы, объема, количества растворенного вещества и растворителя по определённой концентрации раствора.

Понятие о газах. Воздух. Кислород. Горение (7ч.).

Понятие о газах. Закон Авогадро. Воздух – смесь газов. Относительная плотность газов.

Кислород – химический элемент и простое вещество. История открытия кислорода. Схема опытов Д.Пристли и А.Л.Лавуазье. Аллотропия. Озон. Значение озонового слоя Земли. Проблема нарушения его целостности. Повышение содержания озона в приземном слое атмосферы. Получение кислорода в промышленности и лаборатории. Химические свойства кислорода. Процессы горения и медленного окисления. Применение кислорода.

Атмосфера – воздушная оболочка Земли. Тенденции изменения состава воздуха в XXв. Основные источники загрязнения атмосферы. Транспортный перенос загрязнений. Круговорот кислорода в природе. О всемирном законе об атмосфере.

Демонстрации. 1. Получение кислорода. 2. Сжигание в атмосфере кислорода, серы, угля, красного фосфора, натрия, железа. 3. Получение озона. 4. Взаимодействие озона с растворами индиго и иодида калия. 5. Опыты, подтверждающие состав воздуха. 6. Опыты по воспламенению и горению.

Практическая работа. 5. Получение кислорода и изучение его свойств.

Расчётные задачи. 1. Определение относительной плотности газов по значениям их молекулярных масс. 2. Определение относительных молекулярных масс газообразных веществ по значению их относительной плотности.

Тема творческой работы. Источники загрязнения атмосферы и способы его преодоления.

Основные классы неорганических соединений (12 ч.).

Оксиды — состав, номенклатура, классификация. Понятие о гидроксидах — кислотах и основаниях. Названия и состав оснований. Гидроксогруппа. Классификация кислот, их состав, названия. Состав, названия солей, правила составления формул солей.

Химические свойства оксидов. Влияние состава кислот на характер их свойств (на примерах соляной и серной кислот). Общие химические свойства кислот. Растворимость кислот. Кислотные дожди. Физические свойства и способы получения щелочей. Химические свойства солей (взаимодействие растворов солей с растворами щелочей и металлами). Генетическая связь классов неорганических соединений. Амфотерность. Оксиды и гидроксиды, обладающие амфотерными свойствами. Классификация неорганических веществ. Периодическое изменение свойств химических элементов и их соединений (на примере оксидов, гидроксидов и водородных соединений).

Демонстрации. 1. Образцы соединений — представителей кислот, солей, нерастворимых оснований, щелочей, оксидов. 2. Опыты, иллюстрирующие существование генетической связи между соединениями фосфора, углерода, натрия, кальция. 3. Взаимодействие кальция и натрия с водой. 4. Действие индикаторов. 5. Опыты, иллюстрирующие химические свойства отдельных классов неорганических соединений. 6. Образцы простых веществ и их соединений (оксидов и гидроксидов), образованных элементами одного периода.

Лабораторные опыты. 1. Рассмотрение образцов оксидов (углерода (IV), водорода, фосфора, меди, кальция, железа, кремния). 2. Наблюдение растворимости оксидов алюминия, натрия, кальция, меди в воде. 3. Определение среды полученных растворов с помощью индикатора. 4. Рассмотрение образцов солей и определение их растворимости. 5. Взаимодействие оксидов кальция и фосфора с водой, определение характера образовавшегося гидроксида с помощью индикатора. 6. Взаимодействие оксидов меди (II) и цинка с раствором серной кислоты. 7. Получение углекислого газа и взаимодействие его с известковой водой. 8. Исследование свойств соляной и серной кислот с использованием индикаторов. 9. Взаимодействие металлов (магния, цинка, железа, меди) с растворами кислот. 10. Изменение окраски индикаторов в растворах щелочей. 11. Взаимодействие растворов кислот со щелочами. 12. Взаимодействие растворов кислот с нерастворимыми основаниями. 13. Получение нерастворимых оснований и исследование их свойств (на примере гидроксида цинка).

Практическая работа. 6. Исследование свойств оксидов, кислот, оснований.

Раздел 2. Вещества и химические реакции в свете электронной теории. Строение атома. (3 ч)

Строение атома. Строение электронных оболочек атомов элементов: s-, p-, d-, f-электроны. Место элемента в периодической системе и электронная структура атомов. Радиоактивность. Понятие о превращении химических элементов.

Демонстрации. 1. Схемы опытов Томсона, резерфорда, Милликена. 2. Схемы опытов, подтверждающих свойства электрона как частицы и как волны. 3. Модели атомов различных элементов.

Периодический закон и периодическая система элементов Д.И.Менделеева (5 ч).

Свойства химических элементов и их изменения. Классификация химических элементов. Открытие периодического закона. Строение атомов элементов малых и больших периодов, главных и побочных подгрупп. Формулировка периодического закона в современной трактовке. Периодическая система в свете строения атома. Физический смысл номера периода и группы. Семейства элементов (на примерах щелочных металлов, галогенов, инертных газов). Характеристика химических свойств элементов главных подгрупп и периодичность их изменения в свете электронного строения атома. Элементы, соединения которых проявляют амфотерные свойства. Относительная электроотрицательность элементов. Общая характеристика элемента на основе его положения в периодической системе Д.И.Менделеева. Значение периодического закона для развития науки и техники.

Роль периодического закона в создании научной картины мира.

Демонстрации. 1. Набор слайдов, кодограмм, таблиц «Периодический закон и строение атома». 2. Демонстрация образцов щелочных металлов и галогенов. 3. Взаимодействие щелочных металлов и галогенов с простыми и сложными веществами.

Лабораторные опыты. 1. Исследование свойств амфотерных гидроксидов и щелочей.

Строение вещества (7 ч).

Валентное состояние атомов в свете теории электронного строения. Валентные электроны. Химическая связь атомов. Ковалентная связь и механизм её образования. Неполярная и полярная ковалентная связь. Свойства ковалентной связи. Электронные и структурные формулы веществ. Ионная связь и механизм её образования. Свойства ионов. Степень окисления. Природа химической связи и её типы. Относительность типологии химической связи. Влияние типа химической связи на свойства химического соединения. Кристаллическое строение веществ. Кристаллические решётки: атомная, ионная, молекулярная — и их характеристики. Уровни химической организации веществ. Зависимость свойств веществ от их строения.

Демонстрации. 1. Взаимодействие натрия с хлором. 2. Модели кристаллических решёток веществ с ионным, атомным и молекулярным строением. 3. Воссоздание целостной структуры хлорида натрия путём наложения набора кодокарт. 4. Возгонка йода. 5. Испарение твёрдого углекислого газа.

Тема творческой работы. Рассмотрение и анализ взаимообусловленности состава, строения, свойств вещества и его практического значения (на любом примере).

Химические реакции в свете электронной теории (8 ч).

Физическая сущность химической реакции. Электронные уравнения Льюиса. Реакции, протекающие с изменением и без изменения степеней окисления. Окислительно — восстановительные реакции. Процессы окисления и восстановления; их единство и противоположность. Составление уравнений окислительно - восстановительных реакций , расстановка коэффициентов методом электронного баланса, общая характеристика.

Классификация химических реакций в свете электронной теории.

Демонстрации. Примеры окислительно-восстановительных реакций различных типов: горение веществ, взаимодействие металлов с галогенами, серой, азотом, (образование нитрита лития), растворами кислот и солей.

Химические реакции и закономерности их протекания (3 ч)

Скорость химической реакции. Энергетика химических реакций. Факторы, влияющие на скорость химических реакций.

Растворы. Теория электролитической диссоциации (11 ч)

Понятие о растворах. Вещества электролиты и неэлектролиты. Механизм электролитической диссоциации веществ с ионной связью. Механизм диссоциации веществ с полярной ковалентной связью. Сильные и слабые электролиты. Реакции ионного обмена. Свойства ионов. Химические свойства кислот как электролитов. Химические свойства оснований как электролитов. Химические свойства солей как электролитов. Гидролиз солей.

Общая характеристика неметаллов (31 ч)

Элементы-неметаллы в природе и в Периодической системе химических элементов Д.И. Менделеева.Простые вещества-неметаллы, их состав, строение и способы получения. Водородные и кислородные соединения неметалло

Подгруппа кислорода и её типичные представители. Общая характеристика неметаллов подгруппы кислорода. Кислород и озон. *Круговорот кислорода в природе*. Сера — представитель VIA-группы. Аллотропия серы. Свойства и применение. Сероводород. Сульфиды. Кислородсодержащие соединения серы (IV). Кислородсодержащие соединения серы (VI).

Подгруппа азота и её типичные представители. Общая характеристика элементов подгруппы азота. Азот — представитель VA-группы. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и её соли. Фосфор и его соединения. *Круговорот фосфора в природе*

Подгруппа углерода. Общая характеристика элементов подгруппы углерода. Углерод — представитель IVA-группы. Аллотропия углерода. Адсорбция. Оксиды углерода. Угольная кислота и её соли. Кремний и его соединения. *Силикатная промышленность*.

Металлы (12 ч)

Общие свойства металлов. Элементы-металлы в природе и в периодической системе. Особенности строения их атомов. Кристаллическое строение и физико-химические свойства металлов. Электрохимические процессы. Электрохимический ряд напряжений металлов. Сплавы. Понятие коррозии металлов. Коррозия металлов и меры борьбы с ней.

Металлы главных и побочных подгрупп. Металлы IA-группы периодической системы и образуемые ими простые вещества. Металлы IIA-группы периодической системы и их важнейшие соединения. Жёсткость воды. *Роль металлов IIA-группы в природе*. Алюминий и его соединения. Железо — представитель металлов побочных подгрупп. Важнейшие соединения железа.

Общие сведения об органических соединениях (8 ч)

Углеводороды. Возникновение и развитие органической химии — химии соединений углерода. Классификация и номенклатура углеводородов. Предельные углеводороды — алканы. Непредельные углеводороды — алкины. Природные источники углеводородов

Кислородсодержащие органические соединения. Кислородсодержащие органические соединения. Спирты. Карбоновые кислоты

Биологически важные органические соединения. Биологически важные соединения — жиры, углеводы. Белки.

Человек в мире веществ. Вещества, вредные для здоровья человека и окружающей среды. Полимеры. Минеральные удобрения на вашем участке.

Планируемые результаты освоения учебного предмета в курсе химии. 8-9 класс Предметные результаты

- 1. В познавательной сфере:
- давать определения изученных понятий: вещество (химический элемент, атом, ион, молекула, кристаллическая решетка, вещество, простые и сложные вещества, химическая формула, относительная атомная масса, относительная молекулярная масса, валентность, оксиды, кислоты, основания, соли, амфотерность, индикатор, периодический закон, периодическая система, периодическая таблица, изотопы, химическая связь, электроотрицательность, степень окисления, электролит); химическая реакция (химическое уравнение, генетическая связь, окисление, восстановление, электролитическая диссоциация, скорость химической реакции);
- формулировать периодический закон Д.И.Менделеева и раскрывать его смысл;
- описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
- классифицировать изученные объекты и явления;
- наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- структурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов первого третьего периодов, строение простейших молекул.
- 2. В ценностно-ориентационной сфере:
- анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- разъяснять на примерах (приводить примеры, подтверждающие) материальное единство и взаимосвязь компонентов живой и неживой природы и человека как важную часть этого единства;
- строить свое поведение в соответствии с принципами бережного отношения к природе.
- 3. В трудовой сфере:
- планировать и проводить химический эксперимент;
- использовать вещества в соответствии с их предназначением и свойствами, описанными в инструкциях по применению.
- 4. В сфере безопасности жизнедеятельности:
- оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Метапредметные результаты

- 1. владение универсальными естественно-научными способами деятельности: наблюдение, измерение, эксперимент, учебное исследование; применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- 2. использование универсальных способов деятельности по решению проблем и основных интеллектуальных операций: использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
 - 3. умение генерировать идеи и определять средства, необходимые для их реализации;
- 4. умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
 - 5. использование различных источников для получения химической информации.

Личностные результаты

1. в ценностно-ориентационной сфере - чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность, самоконтроль и самооценка;

- 2. в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- 3. в познавательной (когнитивной, интеллектуальной) сфере –мотивация учения, умение управлять своей познавательной деятельностью.

Методические пособия:

- ✓ Настольная книга учителя «Химия 8» / О. С. Габриелян, Н. П. Воскобойникова, А. В. Яшукова.
- ✓ Контрольные и проверочные работы «Химия 8» / О. С. Габриелян, П.Н. Берёзкин, А. А. Ушакова
- ✓ Химия. 8 класс. Поурочные планы по учебнику О.С. Габриеляна / авт. Сост. В.Г. Денисова. Волгоград: Учитель, 2011.
- ✓ Настольная книга учителя «Химия 9» / О. С. Габриелян, И. Г. Остроумов, 2006.
- ✓ Поурочные разработки по химии: 9 класс / Горковенко М.Ю. М: ВАКО, 2010.

Перспективное тематическое планирование

8 класс (68 ч)

Раздел	Часы	Использование оборудования образовательного центра «Точка роста»
Предмет и задачи химии	3 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Делительная воронка, Фарфоровая ступка с пестиком, Комплект термометров (0 – 100 С; 0 – 360 С).
Химические элементы и вещества	9 ч	
в свете атомно-молекулярного		
учения		
Химические реакции. Законы сохранения массы и энергии	6 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Делительная воронка, Фарфоровая ступка с пестиком, Комплект термометров (0 – 100 С; 0 – 360 С). Комплект химических реактивов Цифровая (компьютерная) лаборатория (ЦЛ): Лабораторные весы, нагревательная плитка, Датчик температуры термопарный, спиртовка,
Методы химии	2 ч	
Вещества в окружающей нас природе и технике	6 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Делительная воронка, Фарфоровая ступка с пестиком, Комплект термометров (0 – 100 С; 0 – 360 С). Комплект химических реактивов Цифровая (компьютерная) лаборатория (ЦЛ): Лабораторные весы, нагревательная плитка, спиртовка, Терморезисторный датчик температуры, электроплитка из комплекта комбинированной лабораторной бани
Понятие о газах. Воздух.	7 ч	Демонстрационное оборудование: штатив
Кислород. Горение		демонстрационный химический (опора,

		стержни, лапки, муфты, кольца),
		Комплект мерных колб малого объема.
		Делительная воронка, Фарфоровая ступка с
		пестиком, Комплект термометров (0 – 100
		С; 0 – 360 С). Спиртовка.
		Комплект химических реактивов
Основные классы неорганических	12 ч	Демонстрационное оборудование: штатив
соединений		демонстрационный химический (опора,
		стержни, лапки, муфты, кольца),
		Комплект мерных колб малого объема.
		Делительная воронка, Фарфоровая ступка с
		пестиком, Комплект термометров (0 – 100
		С; 0 – 360 С). Спиртовка.
		Комплект химических реактивов
Строение атома	3 ч	
Периодический закон и	5 ч	
Периодическая система		
химических элементов Д. И.		
Менделеева		
Строение вещества	7 ч	
Химические реакции в свете	8 ч	
электронной теории		

Перспективное тематическое планирование

9 класс (68 ч)

Раздел	Часы	Использование оборудования
		образовательного центра «Точка роста»
Химические реакции и закономерности их протекания	3 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Комплект термометров (0 – 100 C; 0 – 360 C). Комплект химических реактивов Цифровая (компьютерная) лаборатория (ЦЛ): Магнитная мешалка, Терморезисторный датчик температуры, магнитная мешалка, баня комбинированная лабораторная.
Растворы. Теория электролитической диссоциации	11 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Комплект химических реактивов Цифровая (компьютерная) лаборатория (ЦЛ): Терморезисторный датчик температуры, магнитная мешалка, баня комбинированная лабораторная. Датчик электропроводности.
Общая характеристика неметаллов	3 ч	
Водород – рождающий воду и энергию	3 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Комплект химических реактивов. Цифровая (компьютерная) лаборатория (ЦЛ): Датчик рН
Галогены	4 ч	Демонстрационное оборудование: штатив демонстрационный химический (опора, стержни, лапки, муфты, кольца), Комплект мерных колб малого объема. Комплект химических реактивов. Цифровая (компьютерная) лаборатория (ЦЛ): Датчик электропроводности, магнитная мешалка.
Подгруппа кислорода и ее	7 ч	
типичные представители		
Подгруппа азота и ее типичные	6 ч	

представители		
Подгруппа углерода	8 ч	Демонстрационное оборудование: штатив
		демонстрационный химический (опора,
		стержни, лапки, муфты, кольца),
		Комплект мерных колб малого объема.
		Комплект химических реактивов.
Общие свойства металлов	4 ч	Коллекция "Металлы и сплавы"
Металлы главных и побочных	8 ч	Демонстрационное оборудование: штатив
подгрупп		демонстрационный химический (опора,
		стержни, лапки, муфты, кольца),
		Комплект мерных колб малого объема.
		Комплект химических реактивов.
		Цифровая (компьютерная) лаборатория
		(ЦЛ): Датчик давления, датчик кислорода
Углеводороды	5 ч	Коллекция "Нефть и продукты ее
		переработки"
Кислородсодержащие органические	2 ч	
соединения		
Биологически важные	2 ч	
органические соединения		
Человек в мире веществ	2 ч	Цифровая (компьютерная) лаборатория
		(ЦЛ): Датчик рН
		Коллекция "Пластмассы" Коллекция
		"Минеральные удобрения", Коллекция
		"Волокна"